The surface degradation of metals in boiler tubes and turbines in high-temperature corrosive environments causes severe problems\r\nin fuel combustion power plant systems.High-temperature resistant materials have been recently developed using a thermal barrier\r\ncoating (TBC) and high-chromium alloys. Oxide films or coatings formed on metal surfaces at high temperatures can sometimes\r\ndecrease the corrosion rate. However, the damage to the material is often accelerated by the mechanical removal of corrosion\r\nproducts from the material surface. It is therefore very important to investigate the mechanical and adhesive properties of the\r\noxide films or coatings on metal surfaces used in high-temperature environments. This paper introduces a tribological method\r\nthat uses a single spherical projectile impact at high temperature to measure the mechanical and adhesive properties of oxide\r\nfilms formed on various metal surfaces. Impact tests were performed on the surfaces of oxide films after their growth in a hightemperature\r\nfurnace, and the deformed or fractured surfaces were observed in order to measure the mechanical and adhesive\r\nproperties. The mechanical and adhesive properties of an elastic modulus, fracture, and exfoliation stresses were measured using\r\nthe impact method, and the results depended on the type of metal oxide films and on the high-temperature environment.
Loading....